
www.manaraa.com

Basin Scale Water Resources Systems Modeling
Under Cascading Uncertainties

S. Rehana & P. P. Mujumdar

Received: 17 May 2013 /Accepted: 2 May 2014 /
Published online: 21 May 2014
# Springer Science+Business Media Dordrecht 2014

Abstract Global change in climate and consequent large impacts on regional hydrologic
systems have, in recent years, motivated significant research efforts in water resources
modeling under climate change. In an integrated future hydrologic scenario, it is likely that
water availability and demands will change significantly due to modifications in hydro-
climatic variables such as rainfall, reservoir inflows, temperature, net radiation, wind speed
and humidity. An integrated regional water resources management model should capture the
likely impacts of climate change on water demands and water availability along with uncer-
tainties associated with climate change impacts and with management goals and objectives
under non-stationary conditions. Uncertainties in an integrated regional water resources
management model, accumulating from various stages of decision making include climate
model and scenario uncertainty in the hydro-climatic impact assessment, uncertainty due to
conflicting interests of the water users and uncertainty due to inherent variability of the
reservoir inflows. This paper presents an integrated regional water resources management
modeling approach considering uncertainties at various stages of decision making by an
integration of a hydro-climatic variable projection model, a water demand quantification
model, a water quantity management model and a water quality control model. Modeling
tools of canonical correlation analysis, stochastic dynamic programming and fuzzy optimiza-
tion are used in an integrated framework, in the approach presented here. The proposed
modeling approach is demonstrated with the case study of the Bhadra Reservoir system in
Karnataka, India.
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1 Introduction

Climate change is likely to affect various components of a water resources system such as
water availability, water quality, agricultural water demands and consequently the regional
water resources management policies due to increase in temperature and change in precipita-
tion and other climatic variables. Figure 1 shows typical regional water resource system
components likely to be affected by climate change. In modeling a water resource system
under climate change impacts, three steps are generally involved: first, General Circulation
Models (GCMs) outputs are downscaled to obtain climate change projections at regional scale,
second, climate change projections are input into hydrologic models to simulate future water
resources scenarios, and third, to formulate long-term decisions according to the predicted
hydrological conditions and variability. Generally, such hydrological impact assessment stud-
ies of climate change based on downscaling of GCM outputs are subjected to a range of
uncertainties including GCM and scenario uncertainty (Arnell 2004; Prudhomme and Davies
2009), uncertainty due to downscaling methods (Khan et al. 2006; Dibike and Coulibaly 2005;
King et al. 2012) and uncertainty due to the hydrological models (Teutschbein et al. 2011;
Chen et al. 2011) used for impact assessment. A large number of studies have been conducted
in recent years on hydrologic impacts on water resources management and operating policies
by combining statistical downscaling models/Regional Climate Models (RCMs) and climate
scenarios (e.g. Burn and Simonovic 1996; Eum and Simonovic 2010; Vicuna et al. 2010; Raje
and Mujumdar 2010; Davies and Simonovic 2011; Majone et al. 2012).

An integrated regional water resources management operation under climate change should
capture all impacts that climate change can have on the demands and operations of the
reservoir. There are only a few studies with implications on water resources management in
response to the anticipated demands under hydrologic impacts of climate change (Asokan and
Dutta 2008; Davies and Simonovic 2010; Raje and Mujumdar 2010; Eum et al. 2012).
Particularly, analysis of operating rules of a reservoir system accounting for the various
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projected demands of a reservoir in a changed climate is rarely addressed in the climate change
impact studies. The present study proposes an integrated regional water resources management
model with an integration of multiple components including a hydro-climatic variable projec-
tion model, projected demand quantification model, and a water quantity-quality management
model to represent complex relationships in the integration of climate-hydrology-water
availability/demands/quality-reservoir policies. An overview of the modeling framework
adopted in this study is shown in Fig. 2. In the first part of the framework, a hydro-climatic
projection model is applied to downscale the surface hydrologic variables, from GCM outputs
of large-scale climate variables. A multivariable downscaling methodology based on Principal
Component Analysis (PCA) and Canonical Correlation Analysis (CCA) is used to downscale
the hydro-climatic (inflow, rainfall, maximum and minimum temperatures, relative humidity
and wind speed) projections which govern the supply and demands and therefore affect the
reservoir operation.

Uncertainty in the future climate in terms of GCM and scenario, combinedly represented as
climate model uncertainty, stems as a first level of uncertainty in the integrated regional water
resources management modeling. Research on climate model uncertainty in climate change
impact assessment studies has advanced on several fronts (e.g., Tebaldi et al. 2004; Simonovic
and Li 2004; Ghosh and Mujumdar 2009; Simonovic 2010). In this study, the weights are
assigned to each GCM and scenario to derive Multimodel Weighted Mean (MWM) based on
their performance in reproducing the present climatology and deviation of each of the
projection provided by the GCM-scenario combination from the projected ensemble average
following to earlier studies of Ghosh and Mujumdar (2009) and Giorgi and Mearns (2002).
The uncertain hydro-climatic variables are used to quantify the irrigation, water quality, and
hydropower demands for Bhadra reservoir. Several studies have emphasized on integrated
management of water quality and quantity (e.g. Nikoo et al. 2013) and some studies have dealt
with reservoir water quality through optimal releases (e.g. Chaves et al. 2003). Efforts are
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made in this study to assess the impact of climate change on downstream water quality due to
changes in river flow and river water temperature.

The uncertainty introduced by imprecise/fuzzy description of the conflicting goals
forms the second level of uncertainty in the integrated regional water resources manage-
ment model. Fuzzy set theory (Zadeh 1965) is used to address such uncertainty by
membership functions through varying degrees of acceptability (or satisfaction) of reser-
voir users to water allocation (e.g. Orlob and Simonovic 1982; Teegavarapu and
Simonovic 1999; Akter and Simonovic 2004). A reservoir with randomly varying inflow
leads to third level of uncertainty known as stochastic or aleatory uncertainty in an
integrated regional water resources management model. To address the inherent variability
of the reservoir inflow, the fuzzy water allocation model is integrated with a reservoir
operation model such as a Stochastic Dynamic Programming (SDP) (e.g., Loucks et al.
1981; Lee and Labadie 2007) to develop a fuzzy-SDP model to derive the long-term
reservoir operating policies for the current and for the future scenarios. The proposed
methodology is applied to the Bhadra reservoir in India.

The objectives of the work include (i) downscaling the projections of various surface
hydrologic variables from GCM outputs of large-scale climate variables, (ii) addressing
GCM/scenario uncertainty using ensemble averaging approach (iii) quantifying the
projected demands of irrigation, water quality and hydropower demands under climate
change uncertainties (iv) quantifying the current and projected water allocations using an
integrated regional water resources management model (v) analyzing the operating
policies in terms of rule curves and associated pollutant treatment levels under climate
change.

2 Case Study Details

The Bhadra Reservoir is an integrated regional water resources system located on Bhadra
River, Karnataka, India (Fig. 3). The Bhadra command area spreads over the districts of
Chitradurga, Shimoga, Chickmagalur and Bellary as shown in Fig. 3. The gross command area
under the Bhadra canal system is 162,818 ha with a culturable command area of 121,500 ha
out of which 105,570 ha have been earmarked for irrigation. The reservoir also generates
hydropower to a minor extent.

The Bhadra River flows through nearly 190 km from its origin and joins River Tunga
to form the River Tunga-Bhadra. The river receives the waste loads from three major
effluent points, which include two industrial effluents (MPM: Mysore Paper Mill; VISL:
Visvesvaraya Iron and Steel Limited) and one municipal effluent (Bhadravathi City)
(Fig. 1). The considered river stretch of about 27 km is divided into three reaches of
varying lengths based on river morphology, each one of which is further discretized into
computational elements of 1 km in length to estimate the water quality parameters at
prescribed check points as shown in Fig. 1. The high-resolution gridded daily precipi-
tation data from 1971 to 2005 at 0.5×0.5° grid interpolated from station data are
obtained from the India Meteorological Department (IMD), Pune and is used as observed
rainfall data.

The potential effects of climate change on Bhadra River have already been discussed from a
variety of perspectives: water quality (Rehana and Mujumdar 2011, 2012); irrigation demands
(Rehana and Mujumdar 2013); hydrological impacts (Meenu et al. 2013). This work provides
the most robust estimates of future climate change to date for water resources in an uncertain
environment in this region.
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3 Integrating Uncertainties from Climate Projections

The uncertain future hydro-climatic variables which influence water availability and various
water demands of the reservoir are to be identified as predictands to model the future
hydrologic scenario. Climate change is likely to impact the agricultural sector directly with
changes in rainfall and evapotranspiration. The reference evapotranspiration is more complex
form of various climate variables such as air temperature, wind speed, relative humidity, and

Fig. 3 Location Map of Bhadra River Basin
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solar radiation etc. Therefore, reference evapotranspiration cannot be quantified directly
through downscaling. Hence, various surface based variables included in the hydro-climatic
projection model are streamflow, rainfall, air temperature, wind speed, and relative humidity.

The large scale predictors used to downscale the selected hydro-climatic variables are from
Rehana and Mujumdar (2012, 2013). The predictor variable data is collected from National
Center for Environmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) reanalysis data (Kalnay et al. 1996) over a region of 10–20° N to 70–80° E.
The GCMs considered are CGCM2 (Meteorological Research Institute, Japan), MIROC3.2
medium resolution (Center for Climate System Research, Japan), and GISS model E20/Russell
(NASA Goddard Institute for Space Studies, USA) with three scenarios A1B, A2 and B1 from
Intergovernmental Panel on Climate Change (IPCC) AR4 runs for obtaining the projections of
hydro-climatic variables. The selection of three GCMs and three emission scenarios for the
ensemble approach is based on the availability of the large number of predictors. The present
study deals with about thirteen large scale predictors (precipitation flux, precipitable water,
surface air temperature at 2 m, mean sea level pressure, geopotential height at 500 mb, surface
U-wind, surface V-wind, specific humidity at 2 m, surface relative humidity, surface latent heat
flux, sensible heat flux, surface short wave radiation flux, surface long wave radiation flux,
etc.) and the selected GCM and scenario should comprise of these selected predictors. Based
on these restrictions the present study considers three GCMs with three scenarios for the
ensemble approach. The methodology for downscaling of hydro-climatic variables and the
corresponding climate model uncertainty is explained in the following subsection.

3.1 Hydro-Climatic Variable Projection Model

To develop the projections of the multivariate predictands of hydro-climatic variables
(streamflow, average, maximum and minimum air temperatures, relative humidity and wind
speed) a multivariable statistical downscaling methodology based on CCA developed by
Rehana and Mujumdar (2012) is employed. The potential of CCA downscaling model in
simulating the observed and future projections of various predictands over Bhadra command
area is evaluated as shown in Fig. 4. In Fig. 4, figures (a) represent the box plots of observed
and simulated projections from NCEP and three GCMs for the period 1972–1992. These
figures show the hydro-climatic predictions for the training data set simulated with NCEP/
NCAR and with three GCMs and represent CCA model reproduced observed data reasonably
well in terms of R- square values.

3.2 Uncertainties: Climate Change Projections

The figures (b) in Fig. 4 provide the Cumulative Distribution Functions (CDFs) of hydro-
climatic projections for GCMs CGCM2, MIROC3.2 and GISS under A1B, A2 and B1
scenarios for period 2020–2060. The CDFs of hydro-climatic projections downscaled from
one GCM is entirely different from that of another. The dissimilarity can also be observed
among two scenarios of any particular GCM, although they show a similar trend in the
projections. The difference between the CDFs from one GCM to other is more compared to
that from one scenario to another for the same GCM, which indicates that GCM uncertainty is
greater than scenario uncertainty which supports some of the earlier findings on GCM and
scenario uncertainty modeling (Mujumdar and Ghosh 2008; Chen et al. 2011). Climate change
impacts are evaluated by comparing the observed hydro-climatic variables for a time period of
1972–1992 along with the MWM ensemble derived from multimodels and scenarios for future
time period of 2020–2060 time slices (figures (c) in Fig. 4, (i) to (vi)). All climate change
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scenarios project a significant reduction of monthly streamflow for 2020–2060 with respect to
1972–1992, with CCA downscaling (figure (c) of Fig. 4i).

4 Optimal Reservoir Operation

4.1 Operating Policy Model: Stochastic Dynamic Programming

A SDP model is used to derive the optimal monthly steady state operating policy for future
hydrologic scenarios. In period t, for known class intervals of storage at the beginning of the
period, k, storage at the end of the period, l, and inflow, i, the release, Rkilt, is considered as the
water available for allocation among the users of the reservoir in period, t. The release, Rkilt is
used in the fuzzy water allocation model, WQCM, described in Section 4.2, for obtaining the
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optimal allocations among the users and the system performance measure required in SDP.
Figure 5 shows the link between SDP and WQCM.

The optimal satisfaction level, λ∗, obtained from WQCM can be considered as the system
performance measure, λkilt, in SDP for a release of Rkilt. The objective of the SDP model is to
maximize the expected value of λkilt and the backward recursive equation for any stage n and
period t is given by

f tn k; ið Þ ¼ Max
feasible lf g

λkilt þ
X
j

Pt
ij f

tþ1
n−1 l; jð Þ

" #
∀k; i ð1Þ

where λkilt is system performance associated with the reservoir storage at the beginning of the
period, t, Sk

t , inflow during the period, t, Qi
t, release of Rkilt, and reservoir storage at the end of

period, t, Sl
t+1, obtained from WQCM; Pij

t is the transition probability for streamflow from
class i to class j in period t.

The optimal final storage state, l*, in a period t is thus obtained for a given storage state at
the beginning of the period, k and inflow state i by solving the SDP model formulation. The
following section discusses the fuzzy water allocation model, WQCM, which is used to
compute the system performance λkilt.

4.2 Operating Policy Model: Water Quantity Control Model

4.2.1 Irrigation Demands Under Climate Change

The irrigation demand of the command area is computed based on the precipitation contribu-
tion and potential evapotranspiration of the crops grown in that command area following
Rehana and Mujumdar (2013). The projected rainfall and other meteorological variables
obtained from the uncertainty analysis of hydro-climatic variable projection model
(Section 3.2) are used to quantify the irrigation demands for the future scenarios. The details
of the computation of irrigation demands can be obtained from Rehana and Mujumdar (2013).
The projected monthly irrigation water requirement for sugarcane, paddy, permanent garden
and semidry crops over Bhadra command area for current and for two future time slices of

Fig. 5 Link between SDP and WQCM
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2020–2040 and 2040–2060 are quantified. Figure 6a shows projected monthly percentage
changes in rainfall, evapotranspiration for 2020–2060 period compared with those for 1984 to
2004, whereas, Fig. 6b shows the projected monthly difference in irrigation demands for
2020–2060 period compared with those for 1984–2004. It can be observed that the increase in
evapotranspiration offsets the increasing effect of rainfall indicating pronounced changes in
irrigation demands. For example, the irrigation demand for the month of October is entirely
due to increase in evapotranspiration with a decrease in rainfall.

The quantified monthly irrigation water demands for current and for two future time slices of
2020–2040 and 2040–2060 are used as membership functions for irrigation user (qα

D). The
allowable water deficit for irrigation user is considered subjectively as fifteen percent of the
desirable quantity, qα

D, to define the minimum irrigation requirement, qα
Min. The linear member-

ship functions for irrigation user for current and two future scenarios of 2020–2040 and 2040–
2060 are shown in Fig. 7a. Further, this forms the basis to modify the membership function of
the irrigation user accounting for the projected irrigation demands in the water allocationmodel.

4.2.2 Downstream Water Quality Under Climate Change

The optimal treatment levels and the corresponding degree of acceptability for a given flow
can be determined using a Waste Load Allocation Model (WLAM). For this purpose, a Fuzzy
Waste Load Allocation Model (FWLAM) developed by Sasikumar and Mujumdar (1998) is
adopted to assess the impact of climate change on downstream water quality due to changes in
river flow and river water temperature. The FWLAM can be solved for different values of flow
between a minimum prescribed downstream release, qβ

Min, (generally specified by Pollution
Control Boards, PCBs), and maximum possible flow, qβ

D,(considered, based on several trial
runs of the FWLAM, as the average of all possible release values in the SDP) of the reservoir
to obtain a functional relation between the flow, qβ, and quality control decision maker’s
satisfaction, λ1

∗ (Fig. 7b). The functional relation, f(qβ), indicates the degree of acceptability of
the decision maker for water quality control in the river for a given downstream water
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allocation, qβ. The typical membership function for downstream water quality, μ(qβ), which
can be used into the WQCM to obtain the water allocations is given as follows,

μ qβ
� � ¼ 0 qβ < qMin

β

f qβ
� �

qMin
β ≤qβ ≤q

D
β

1 qβ ≥q
D
β

8><
>: ð2Þ

The projected changes of reservoir inflows and water temperature (due to change in air
temperature) are incorporated into the river water quality management model (following
Rehana and Mujumdar 2011) to examine the downstream river water quality response. A
regression model is applied with the uncertain projected air temperature resulting from
uncertainty analysis of hydro-climatic projection model (Section 3.2) to evaluate the future
water temperature. Further, the non-point source pollution is accounted in the water quality
simulation model by adopting a backward finite difference formulation (Chapra 1998), where
the incremental flow is divided equally among the element of a reach for the river stretch under
consideration following to Rehana and Mujumdar (2009).

4.2.3 Hydropower Demand

The water requirement for hydropower generation depends on the head available, which in
turn depends on the reservoir storage. The release required, for power production, Qp, is
considered as the desirable release, qχ

D, for a given head. For a given state in SDP the qχ
D is

worked out for the mean storage, which is the average of storages at the beginning and end of a
period, with the corresponding net head determined from the storage-elevation relationship of
the reservoir. The storage-elevation relationship derived based on historical data is assumed to
remain unchanged for the future scenarios. Therefore, the membership function for hydro-
power demand remains unchanged for the future scenarios. The linear membership function
for hydropower demand, is then given as:

μ qχ
� �

¼

0 qχ≤q
Min
χ

qχ−qMin
χ

qDχ−qMin
χ

 !
qMin
χ ≤qχ≤q

D
χ

1 qχ≥q
D
χ

8>>>><
>>>>:

ð3Þ

where qχ
Min is the minimum specified power at a given head; qχ is the hydropower water

allocation. The derived membership functions for current and for future scenarios for each of
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the reservoir user, accounting for the projected water demands of the reservoir, are used in the
WQCM to obtain the water allocations among the reservoir users under climate change.

Further, the present study considers linear membership functions for each of the water user
generated based on subjective perception of membership degree for a given water allocation.
The essential approach in real conditions is to carry out field surveys of water managers, users,
and experts, to describe their interpretation of how well an allocation meets the goals for
various purposes and then to fit the response to suitable membership functions. The common
approach is to fit a least square fitting between survey data and suitable parameterized family
of membership functions. In some situations the limitation of linear membership function can
be eliminated by employing some data-driven methods (e.g. probability, possibility, neural
networks, nearest neighbor) to generate non-linear membership functions such as Gaussian
and sigmoid functions which may be more suitable for realistic situations.

4.2.4 Formulation of WQCM

The WQCM maximizes the minimum satisfaction level, λ, in the system, (Binoy Alias 2005)
by considering the membership functions of all the users to determine the water allocations for
current and for future scenarios. The model is expressed as follows:

Maximize λ ð4Þ

Subject to
qα− qMin

α

qDα− qMin
α

� �
≥λ ð5Þ

f qβ
� �

≥λ ð6Þ

qχ− qMin
χ

qDχ− qMin
χ

" #
≥λ ð7Þ

qMin
α ≤qα≤q

D
α ð8Þ

qMin
β ≤qβ ≤q

D
β ð9Þ

qMin
χ ≤qχ≤q

D
χ ð10Þ

qχ þ qβ þ qχ≤WA ð11Þ

0≤λ≤1 ð12Þ
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where WA is the amount of water available for allocation, which is the reservoir release, Rkilt,
for a given k, i, l and t in SDP. The solution of the resulting optimization problem will be q∗

and λ∗ where q∗ = {qα
∗,qβ

∗,qχ
∗} corresponds to optimum water allocation among the three water

users; viz., irrigation, water quality and hydropower, and λ∗ is the maximized minimum
satisfaction level in the system. The recursive equation (Eq. (1)) is solved together with
WQCM till the steady state is reached, defining the steady state policy l∗(k,i,t) separately
for current and for future scenarios.

The irrigation demand model (Section 4.2.1), water quality model (Section 4.2.2), hydro-
power demand model (Section 4.2.3), water allocation model (Eqs. (4) to (12)) and steady state
operating policy model (Eq. (1)) are solved together with the membership functions evaluated
for irrigation (Fig. 7a), water quality control (Fig. 7b) and hydropower (Eq. (3)) to derive the
optimal operating policies. The steady state operating policies are derived for current (1967–
2000) period and for each GCM-scenario combination and for the weighted mean hydro-
climatology for a 30-year future time slice (2020–2050) for Bhadra reservoir system. In each
operating policy the WQCM is solved for water allocation for all states in a stage of SDP.
Twelve transition probability matrices are determined, one for each month, using the available
historical streamflow records (1967–2000) for current period and using the projected inflows
for future period of 2020–2050. The outputs from each policy are monthly releases, water
allocations for each reservoir user and storages, from which monthly operating policies are
generated for the current and for future scenarios.

4.3 Impact on Optimal Water Allocations

The monthly water allocations are derived from WQCM for each reservoir user in conjunction
with the projected demands computed accounting for the climate model uncertainty of hydro-
climatic variables. The resulting irrigation water allocations are projected to increase through-
out most of the year to compensate the projected irrigation demands. For instance, the
irrigation demand for the month of April for current and for future time slices of 2020–2040
and 2040–2060 is obtained as 268.20, 280.80 and 294.07 Mm3 respectively and the quantified
water allocations are 242.43, 250.04 and 263.73 Mm3. The derived allocations are able to
fulfill the demands for the monsoon months starting from June to October for current as well as
for future scenarios. However, significant water deficits are observed for the non-monsoon
months starting from November to May for current as well as for future periods. The negligible
amount of rainfall in these months necessitates higher irrigation demands and therefore
consequent occurrence of water deficits, which are more pronounced for the future scenarios.

The total downstream allocations depend on the hydropower and water quality allocations.
The FWLAM is solved for a particular downstream allocation to obtain the optimal fraction
removal levels for the dischargers and the resulting Dissolved Oxygen (DO) levels at various
checkpoints along the river stretch. Sample results of the FWLAM for a given downstream
allocation, resulting fractional removal levels for three dischargers, and the DO levels in mg/l
at three check points are given in Table 1. From Table 1 it is clear that downstream allocations
are projected to decrease due to change in response to the water quality according to the future
projected changes of reservoir inflows and water temperature. In addition, the projected
irrigation water allocations (to compensate the projected irrigation demands) also affect the
downstream water allocations. It may be noted that higher downstream allocation for water
quality control leads to lower effluent treatment levels leading a healthy downstream environ-
ment, particularly for monsoon months. The downstream river stretch of Bhadra reservoir may
experience deterioration conditions with decrease in DO levels for the non-monsoon months
with a minimum downstream allocation of 9 Mm3 and consequent increase in higher treatment
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levels of about 90 % (Table 1). Therefore, the minimum release of 9 Mm3 may not be adequate
due to a decrease in DO level up to 2.02 mg/l, particularly in the low flow months of January,
February and March. Such minimum releases can be revised to avoid eutrophication condi-
tions and to maintain a healthy downstream river environment. Further, the environmental
flow rates play an important role over Bhadra river stretch due to the presence of high effluent
dischargers within a short river stretch and require considerable attention towards the down-
stream releases of the Bhadra reservoir.

4.4 Impact on Operating Policies

There is a large uncertainty in the regional impacts of climate change in the Bhadra river basin.
Figure 8 depicts the uncertainties at various stages of the regional impact assessment of climate
change, representing: uncertainty in reservoir inflows from hydro-climatic projection model
(Fig. 8a); uncertainty in demand quantification from irrigation demand projection model
(Fig. 8b); uncertainty in the satisfaction level of the reservoir system for a given water
allocation from water quantity model (Fig. 8c), and uncertainty in the operating rule curves
for the steady state policies (Fig. 8d). Since uncertainties accumulate from various levels, their
propagation up to the regional or local level leads to large uncertainty ranges at such scales
(Wilby 2005) resulting in more complexity in the selection of appropriate rule curves. From
Fig. 8, it is clear that the projected decrease in reservoir inflows and increase in water demands
will have serious negative consequences on satisfaction level of the reservoir system. The
reduced amount of inflows reduces the releases/water available for allocation and consequently
the satisfaction level of the reservoir system, λ*, under climate change conditions. Figure 8d
shows the current and future projected rule curves for all GCM-scenario projections, thus
derived. There is a significant uncertainty in the derived operating policies for the Bhadra
reservoir. The required storages to be maintained in the reservoir are seen to be increasing for
the future scenarios under various climate change projections to compensate the projected
water demands and reduced water availability for the monsoon months. For non-monsoon

Table 1 Sample results of waste load allocation model: for a given downstream allocated flow, the resulting
fractional removal levels for three dischargers (MPM, Bhadravathi City and VISL) and the DO levels at three
check points (Checkpoints 1, 2 and 3) (Fig. 1)

Month Downstream water quality response from FWLAM

Property Current 2020–2040 2040–2060

Jun Downstream allocation (Mm3) 464.88 377.91 362.50

Fractional removal level (%) 51 49 51 53 53 53 53 53 53

DO levels at 3 check points (mg/l) 6.57 6.72 6.44 6.56 6.70 6.34 6.55 6.69 6.31

Jul Downstream allocation (Mm3) 461.73 427.56 394.83

Fractional removal level (%) 51 51 51 52 52 49 52 52 52

DO levels at 3 check points (mg/l) 6.57 6.72 6.44 6.56 6.72 6.40 6.56 6.70 6.36

Mar Downstream allocation (Mm3) 9.00 9.00 9.00

Fractional removal level (%) 90 90 90 90 90 90 90 90 90

DO levels at 3 check points (mg/l) 5.15 4.63 2.02 5.15 4.63 2.02 5.15 4.63 2.02

Apr Downstream allocation (Mm3) 83.02 53.36 62.51

Fractional removal level (%) 74 61 75 83 77 83 79 79 79

DO levels at 3 check points (mg/l) 6.35 6.30 4.96 6.24 6.11 4.44 6.28 6.18 4.63
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months, even though the projected water demands are higher, the increased water availability
compared to current conditions results in reduced storages to be maintained. This perhaps
needs efforts towards optimal investment in water storage capacity (Fisher and Rubio 1997)
considering the uncertainty in water supply and demands due to the variability in hydrological
cycle due to climate change.

5 Concluding Remarks

A modeling framework is presented in this paper addressing various levels of uncertainties in
an integrated regional water resource system to develop long term operating policy considering
three water users: irrigation, water quality and hydropower. The main focus of the proposed
methodology is on the interconnections between climate change scenarios, water resources
supply, demand, allocations and long term operating policies. Uncertainties due to climate
change impacts arising from choice of specific models and scenarios, conflicting interests
among the water users and random nature of reservoir inflows are all modeled and integrated
to provide reservoir rule curves and associated pollutant treatment levels. The water allocation
model developed in this study facilitates explicit inclusion of downstream water quality. The
application is demonstrated with outputs from three GCMs of the CMIP3 ensemble for AR4
scenarios. Simulations of CMIP5 ensemble of models are now available for the AR5 scenarios.
Use of these simulations may produce different sets of results. Further, the operating policies
derived for climate change scenarios from classical optimization methods such as SDP should
be interpreted with caution. Classical SDP cannot accommodate non-stationarity in the inflow
process, and thus the information on future variability of inflows due to climate change cannot
be addressed in the SDP. Further, the methodology and modeling tools developed in the
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Fig. 8 Various levels of uncertainties in the regional impacts of climate change in the Bhadra river basin
showing the maximum and minimum values, along with the MWM hydro-climatology for the 2020–2050 period
reflecting uncertainty in a the reservoir inflows from hydro-climatic projection model, b the demand quantifi-
cation from irrigation demand model, c the satisfaction level of the reservoir system for a given water allocation
from water quantity model and d the operating rule curves for the steady state policies
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present work discus the projections of future water demand mostly as a physically – based
problem caused by the impact of climate change on the hydrologic cycle. Human impact and
population changes must be considered which have much more important role to play in the
projections of future water demand (e.g. Vörösmarty et al. 2000).
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